Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein.
نویسندگان
چکیده
Microtubule-associated protein 2 (MAP2) and tau, which is involved in Alzheimer's disease, are major cytoskeletal proteins in neurons. These proteins are involved in microtubule assembly and stability. To further characterize MAP2, we took a strategy of identifying potential MAP2 binding partners. The low molecular weight MAP2c protein has 11 PXXP motifs that are conserved across species, and these PXXP motifs could be potential ligands for Src homology 3 (SH3) domains. We tested for MAP2 interaction with SH3 domain-containing proteins. All neuronal MAP2 isoforms bound specifically to the SH3 domains of c-Src and Grb2 in an in vitro glutathione S-transferase-SH3 pull-down assay. Interactions between endogenous proteins were confirmed by co-immunoprecipitation using brain lysate. All three proteins were also found co-expressed in neuronal cell bodies and dendrites. Surprisingly, the SH3 domain-binding site was mapped to the microtubule-binding domain that contains no PXXP motif. Src bound primarily the soluble, non-microtubule-associated MAP2c in vitro. This specific MAP2/SH3 domain interaction was inhibited by phosphorylation of MAP2c by the mitogen-activated protein kinase extracellular signal-regulated kinase 2 but not by protein kinase A. This phosphorylation-regulated association of MAP2 with proteins of intracellular signal transduction pathways suggests a possible link between cellular signaling and neuronal cytoskeleton, with MAP2 perhaps acting as a molecular scaffold upon which cytoskeleton-modifying proteins assemble and dissociate in response to neuronal activity.
منابع مشابه
Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton.
Microtubule-associated protein 2 (MAP2) is a neuronal phosphoprotein that promotes net microtubule growth and actin cross-linking and bundling in vitro. Little is known about MAP2 regulation or its interaction with the cytoskeleton in vivo. Here we investigate the in vivo function of three specific sites of phosphorylation on MAP2. cAMP-dependent protein kinase activity disrupts the MAP2-microt...
متن کاملPhosphorylation-dependent Localization of Microtubule-associated Protein MAP2c to the Actin Cytoskeleton□V
Microtubule-associated protein 2 (MAP2) is a neuronal phosphoprotein that promotes net microtubule growth and actin cross-linking and bundling in vitro. Little is known about MAP2 regulation or its interaction with the cytoskeleton in vivo. Here we investigate the in vivo function of three specific sites of phosphorylation on MAP2. cAMP-dependent protein kinase activity disrupts the MAP2–microt...
متن کاملHeterogeneity of microtubule-associated protein 2 during rat brain development.
The electrophoretic pattern of the large microtubule-associated protein, MAP2, changes during rat brain development. Immunoblots of NaDodSO4 extracts obtained from the cerebral cortex, cerebellum, and thalamus at 10-15 days after birth reveal only a single electrophoretic species when probed with any of three MAP2 monoclonal antibodies. By contrast, adult MAP2 contains two immunoreactive specie...
متن کاملAccumulation of Intraneuronal β-Amyloid 42 Peptides Is Associated with Early Changes in Microtubule-Associated Protein 2 in Neurites and Synapses
Pathologic aggregation of β-amyloid (Aβ) peptide and the axonal microtubule-associated protein tau protein are hallmarks of Alzheimer's disease (AD). Evidence supports that Aβ peptide accumulation precedes microtubule-related pathology, although the link between Aβ and tau remains unclear. We previously provided evidence for early co-localization of Aβ42 peptides and hyperphosphorylated tau wit...
متن کاملPhosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells
The influence of phosphorylation on the binding of microtubule-associated protein 2 (MAP2) to cellular microtubules was studied by microinjecting MAP2 in various phosphorylation states into rat-1 fibroblasts, which lack endogenous MAP2. Conventionally prepared brain MAP2, containing 10 mol of endogenous phosphate per mol (MAP2-P10), was completely bound to cellular microtubules within 2-3 min a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 27 شماره
صفحات -
تاریخ انتشار 2000